

Oxidative stress programming in a rat model of postnatal early overnutrition – role of insulin resistance^{☆,☆☆}

Ellen P.S. Conceição^{a,1}, Juliana G. Franco^{a,1}, Elaine Oliveira^a, Angela C. Resende^b, Taline A.S. Amaral^b, Nayara Peixoto-Silva^a, Magna C.F. Passos^a, Egberto G. Moura^a, Patrícia C. Lisboa^{a,*}

^aDepartment of Physiological Sciences, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil

^bDepartment of Pharmacology and Psychobiology, State University of Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil

Received 13 April 2011; received in revised form 5 December 2011; accepted 17 February 2012

Abstract

Postnatal early overfeeding (EO) is related to later development of overweight and other metabolic disorders. As oxidative stress is implicated in most human diseases, as obesity and diabetes, we decided to study some parameters related to oxidative stress and insulin signaling in liver from EO animals in adult life. To induce EO, litter size was reduced to three pups per litter (SL: small litter) and groups with normal litter size (NL: 10 pups per litter) were used as control. After weaning, rats had free access to standard diet and water. Body weight and food intake were monitored daily and offspring were killed at 180 days-old. Significant differences had $P < .05$ or less. As expected, SL rats had hyperphagia, higher body weight and higher visceral fat mass at weaning and adulthood. In liver, postnatal EO programmed for lower catalase (−42%), superoxide dismutase (−45%) and glutathione peroxidase (−65%) activities. The evaluation of liver injury in adult SL group showed lower nitrite content (−10%), higher liver and plasma malondialdehyde content (+25% and 1.1-fold increase, respectively). No changes of total protein bound carbonyl or Cu/Zn superoxide dismutase protein expression in liver were detected between the groups. Regarding insulin signaling pathway in liver, SL offspring showed lower IRS3 (−66%), IRS1 (−50%), phospho-IRS1 (−73%), PI3-K (−30%) and Akt1 (−58%). Indeed, morphological analysis showed that SL rats presented focal areas of inflammatory cell infiltrate and lipid drops in their cytoplasm characterizing a microsteatosis. Thus, we evidenced that postnatal EO can program the oxidative stress in liver, maybe contributing for impairment of the insulin signaling.

© 2013 Elsevier Inc. All rights reserved.

Keywords: Small litter; Reactive oxygen species; Insulin signaling

1. Introduction

In recent decades, the prevalence of childhood obesity has greatly increased worldwide [1]. It is known that nutritional, environmental and/or hormonal influences during critical periods early in life can permanently change the structure and function of body tissues and

systems; this association is denominated metabolic programming [2], and it was confirmed by epidemiological and experimental data [3,4]. Studies in animal models have shown that excess of nutrition in perinatal life represents a risk factor for obesity and associated metabolic disturbances in adulthood [5–7]. Recently, in a systematic review and meta-analysis, Risnes et al. [8] showed a strong association between higher birth weight and increased risk of cancer deaths.

Rats raised in “small litters” (SL) are an established animal model to study short- and long-term consequences of childhood obesity [9]. This model of postnatal early overnutrition (EO) was associated with hyperphagia, obesity, hypertension and hyperinsulinemia in adult life [10–14]. Other studies have suggested that oxidative stress, the imbalance between cellular production of reactive oxygen species (ROS) and antioxidant defenses in cells, could be an early event in the development of obesity-related chronic diseases, such as cardiovascular diseases, diabetes mellitus and cancer [15,16]. Nutrient overload and obesity increase ROS generation and oxidative stress. Excessive nutrient in the metabolic pathways leads to an increased electron flux through mitochondrial electron transfer chain. The consequent electron leak from respiratory complex I and III of electron transfer chain leads to an increased production of ROS from the mitochondria, such as superoxide and hydrogen peroxide [15].

[☆] Funding: This research was supported by the “National Council for Scientific and Technological Development” (Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq), the “Carlos Chagas Filho Research Foundation of the State of Rio de Janeiro” (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro-FAPERJ) and Coordination for the Enhancement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES).

^{☆☆} Declarations of interest: Authors declare no conflict of interest.

* Corresponding author. Departamento de Ciências Fisiológicas – 5º andar, Instituto de Biologia - Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87- Rio de Janeiro, RJ, 20550-030 - Brazil. Tel.: +55 21 25876434; fax: +55 21 25876129.

E-mail addresses: pclisboa@uerj.br, patrícialisboa@pq.cnpq.br (P.C. Lisboa).

¹ EPSC and JGF contributed equally to this study.

Previously, we have shown in adult SL rats, the programming for overweight, higher total and visceral fat mass, lower high-density lipoprotein cholesterol, hyperphagia, central leptin resistance and thyroid hypofunction in adult life [6,7]. At weaning, SL rats have insulin resistance characterized by an increase in fasting glucose levels and hyperinsulinemia, while at 6 months old, these animals showed a slight impairment in glucose tolerance test, 60 and 120 minutes after glucose load, suggesting insulin resistance, despite basal normoglycemia and normoinsulinemia [7]. Other reports showed that older (8 months old) SL rats present insulin resistance, suggesting that insulin resistance in this experimental model seem to be age dependent [10,11].

Since ROS have been proposed as an unifying mechanism linking nutrient excess and obesity-associated disturbances, in the present study we evaluated some parameters related to oxidative stress in adult rats programmed by EO. In addition, considering that there are two-way association between excessive ROS and insulin resistance, we studied the insulin signaling in liver.

2. Methods and materials

The use of the animals according to our experimental design was approved by the Animal Care and Use Committee of the Biology Institute of the State University of Rio de Janeiro (CEUA/184/2007; CEUA/006/2009), which based their analysis on the principles adopted and promulgated by the Brazilian Law issued on November 8, 2008 [17,18]. Wistar rats were housed in a room with controlled temperature ($25 \pm 1^\circ\text{C}$) and artificial dark-light cycles (lights on 07:00 h, lights off 19:00 h). Adult virgin female rats were caged with male rats (3:1) and after mating, each female was placed in an individual cage with free access to water and food until delivery.

2.1. Experimental model of postnatal EO

To induce EO during lactation, 3 days after birth, the litter size was adjusted to three male rats per litter (SL) [6,11]. Litter containing 10 pups per mother was used as control (NL). The rats analyzed were randomly chosen from 16 different litters (8 SL litters and 8 NL litters). After postnatal day 21 (PN21) that corresponds to weaning period, both groups have free access to water and standard diet. During lactation, body weight (BW) gain was daily monitored and from weaning until PN180, body weight and food intake (g/100g BW) were monitored every 4 days.

At PN180, rats were killed after to be anaesthetized with pentobarbital (0.06 g/kg BW) in order to collect blood, liver and visceral fat mass (VFM). The blood was collected by cardiac puncture and poured in a tube containing EDTA. The VFM (mesenteric, epididymal and retroperitoneal white adipose tissue) was excised and immediately weighed for evaluation of central adiposity. Plasma and liver samples were frozen at -80°C until analysis.

2.2. Determination of antioxidant enzyme activities in liver

Liver samples of 200 mg were homogenized in potassium phosphate buffer with EDTA in mechanical homogenizer (CT-136 model from Cientec-laboratory equipment, Campinas, SP, Brazil). After centrifugation, homogenates were stored at -80°C until analysis. The total protein content was determined by the Bradford method [19].

Total superoxide dismutase (SOD) activity was assayed by measuring the inhibition of adrenaline auto-oxidation as absorbance at 480 nm [20]. Catalase (CAT) activity was measured by the rate of decrease in H_2O_2 at 240 nm according to the method of Aebi [21]. Glutathione peroxidase (GPx) activity was evaluated according to Flohé & Günzler [22] by measuring the oxidation of NADPH at 340 nm in the presence of H_2O_2 .

2.3. Nitrite assay

The yield of radical nitric oxide (NO) an indirect measurement of nitric oxide content was evaluated by Griss reaction through quantification of nitrite (NO_2^-) in liver at 540 nm [23].

2.4. Thiobarbituric acid reactive substances (TBARS)

Lipid peroxidation was measured by malonaldehyde (MDA) concentration using the TBARS method as previously described [24,25]. Briefly, plasma and liver homogenates were mixed with 1 ml of 10% trichloroacetic acid and 1 ml of 0.67% thiobarbituric acid (Sigma Chemical, St. Louis, MO, USA); subsequently they were heated in a boiling water bath for 30 min. The absorbance of the organic phase containing the pink chromogen was measured spectrophotometrically at 532 nm. MDA equivalents were expressed in nMol/mg protein.

2.5. Protein oxidation

Protein oxidation was evaluated in liver accordingly Levine et al. [26] as carbonyl groups reacting with 2,4-dinitrophenyl-hydrazine (Sigma). Values of absorbance were obtained at 380 nm and expressed in nmol of carbonyl by 0.5 mg of protein.

2.6. Western blotting analysis

Liver samples were homogenized in cold lysis buffer (50 mM Hepes, pH 6.4, 1 mM MgCl₂, 10 mM EDTA and 1% Triton X-100) containing protease inhibitors (10 µg/µl aprotinin, 10 µg/µl leupeptin, 2 µg/µl pepstatin and 1 mM phenylmethylsulfonyl fluoride, Sigma-Aldrich, St. Louis, MO, USA) using a Ultra-Turrax homogenizer (IKA Werke, Staufen, Germany). After centrifugation, homogenates were stored at -20°C . The total protein content was determined by the BCA protein assay kit (Pierce, Rockford, IL, USA).

Samples (30 µg total protein) were electrophoresed in 10–12% Tris-glycine sodium dodecyl sulfate polyacrylamide gels. Proteins were transferred for polyvinylidene fluoride membranes (Hybond ECL; Amersham Pharmacia Biotech, London, UK), blocked in 5% dry milk in Tween-20 tris buffered saline (T-TBS; 0.02 M Tris/0.15 M NaCl, pH 7.5 containing 0.1% Tween 20) at room temperature for 1 h, washed 3× with T-TBS and incubated with the primary antibodies (Cu/Zn SOD, IR β, IRS1, phospho-IRS1, PI3-K, Akt1 and phospho-Akt1 at 1:500 concentration) overnight at 4°C . Primary antibodies were purchased from Santa Cruz Biotechnology (San Francisco, CA, USA). After washing 3× with T-TBS, blots were incubated with appropriate secondary antibodies at 1:5000 concentration (Santa Cruz Biotechnology) for 1 h and then incubated with streptavidin (Zymed, Carlsbad, CA, USA) in the same dilution of the secondary antibody for 1 h. Blots were developed with diaminobenzidine (DAB; Sigma Chemical) as chromogenic substrate or with enhanced chemiluminescence (ECL; Amersham Biosciences, Piscataway, NJ, USA).

2.7. Liver histology

Liver samples were fixed in formalin (freshly prepared 1.27 mol/L formaldehyde, 0.1 M phosphate-buffered saline, pH 7.2) and embedded in paraffin to non-serial sections of 5 µm. Sections were placed in glass slides to stain in hematoxylin/eosin. The morphological study was performed utilizing digital images, acquired at random (TIFF format, 36-bit color, 1360x1024 pixels) with an Olympus DP71 camera and an Olympus BX40 epifluorescence microscope (Olympus, Tokyo, Japan).

2.8. Statistical analysis

Data are reported as mean \pm S.E.M. The GraphPad Prism 4 program (GraphPad softwares, La Jolla, CA, USA) was used for statistical analyses and graphics. Two-way analysis of variance and Bonferroni post test were used to analyze body weight and food intake changes. Cu/Zn SOD expression and insulin signaling were analyzed by the non-parametric Mann-Whitney *U* test. The other experimental observations were analyzed by unpaired Student's *t* test, with significance level set at $P<.05$.

3. Results

3.1. Body weight, food intake and visceral fat mass

Body weight and food intake from weaning (PN21) to the sacrifice (PN180) are shown in Fig. 1. Offspring overfed during lactation (SL) had higher body weight than NL rats from PN7 until the end of lactation (+10%, $P<.0001$, Fig. 1A). SL rats remained overweight until PN180 (+15%, $P<.0005$, Fig. 1B). SL group presented a higher relative food intake from weaning until adulthood (PN180: +7%, $P<.05$, Fig. 1C). Also VFM was higher (+92%, $P<.0001$, Fig. 1D) in SL rats compared to NL rats.

3.2. Evaluation of oxidative stress parameters

As shown in Fig. 2, adult SL offspring showed lower CAT (−42%, $P<.0001$; Fig. 2A), SOD (−45%, $P<.0001$, Fig. 2B) and GPx activities (−65%, $P<.0001$, Fig. 2C) than the NL group. Despite the lower SOD activity, Western blot analysis showed that Cu/Zn SOD content was not different between the groups (NL:101.49 \pm 6.36 vs. SL:86.60 \pm 5.43).

As depicted in Fig. 3, liver nitrite bioavailability was lower in SL than NL group (−10%, $P<.0001$, Fig. 3A). Oxidative damage

assessed by MDA quantification was higher in SL group both in liver (+ 25%, $P<0.05$; Fig. 3B) and in plasma (1.1 fold-increase; $P<0.05$; Fig. 3C).

No significant difference in liver total protein bound carbonyl was observed between groups (Fig. 3D).

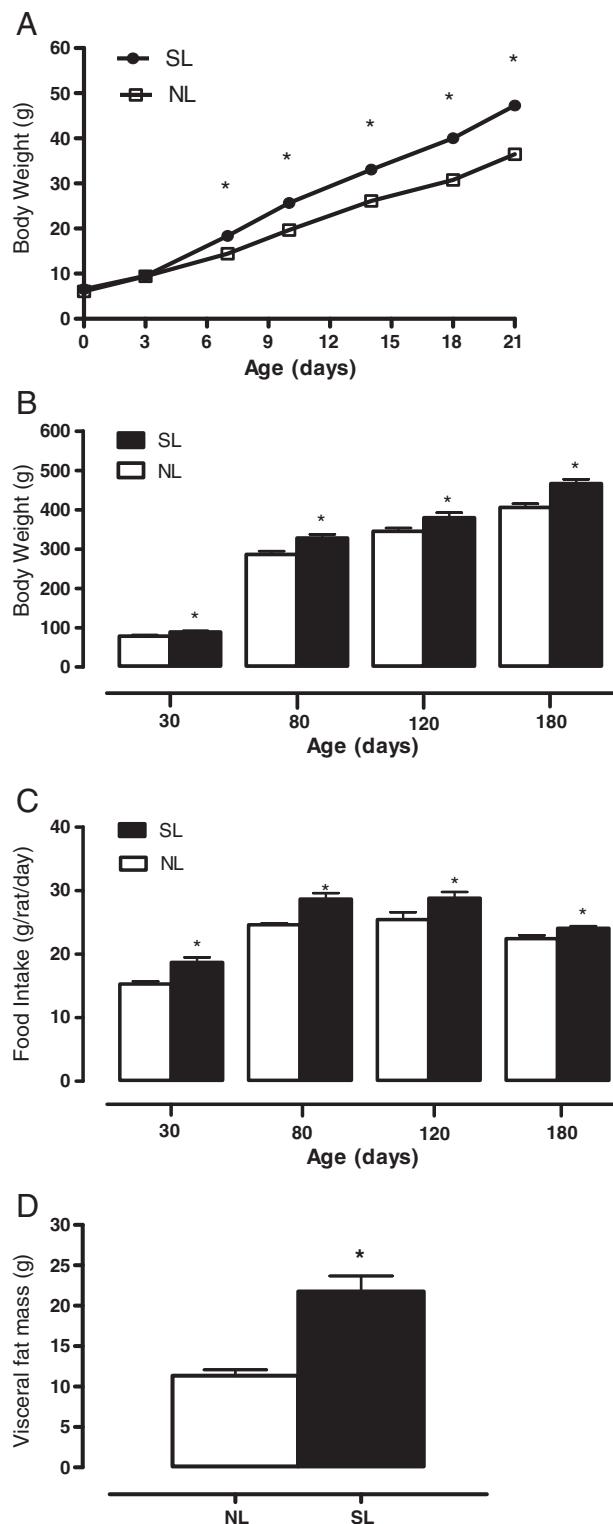


Fig. 1. Body weight evolution of SL (●) and NL (□) rats during lactation (A) and after weaning (B) until 180 days old. Food intake at 30, 80, 120 and 180 days of NL and SL rats (C). Visceral fat mass of NL and SL rats (D). Values are reported as mean \pm S.E.M. * $P<0.05$; $n=8$ animals/group.

3.3. Insulin signaling

Liver content of insulin signaling molecules IR β , IRS1, phospho-IRS1, PI3-K, Akt1 and phospho-Akt1 are shown in Fig. 4. The content of IR β , phospho-IRS1, IRS1, PI3-K, Akt1 were lower in SL compared to NL group: IR β (−66%; $P<0.05$); Fig. 4A; phospho-IRS1 (−73%; Fig. 4B); IRS1 (−50%; $P<0.05$; Fig. 4C), PI3-K (−30%; $P<0.05$; Fig. 4D) and Akt1 (−58%; $P<0.05$; Fig. 4E). We did not find differences in the content of phospho-Akt1 between the groups (Fig. 4F).

3.4. Liver histology

The morphological analysis showed a dysfunction in the hepatic tissue of adult SL offspring. As demonstrated in Fig. 5, SL rats presented focal areas of inflammatory cell infiltrate and drops of lipids in their cytoplasm characterizing a microsteatosis, differently of the NL rats that demonstrated a liver with preserved architecture.

Fig. 2. Liver catalase activity (A), superoxide dismutase activity (B) and glutathione peroxidase activity (C) in adult SL (black) and NL (white) rats. Values are reported as mean \pm S.E.M. * $P<0.001$, $n=8$ animals/group.

4. Discussion

In the present study, we observed that EO induced by small litter size causes an increase in body weight gain during lactation and programs for hyperphagia and overweight in adult life, confirming previous reports [11,27,28,14] and also our previous results showing that SL rats presented higher central adiposity as well as central leptin resistance at 180 days old [6,7]. Since nutrient overload and obesity were associated with increased ROS generation the main focus of this study was to evaluate the oxidative stress in rats programmed by EO during lactation.

Obesity is associated with an unbalance of both lipid and carbohydrate metabolisms. These nutrients in excess also increase the demand on the mitochondria and the utilization of the electron transport chain leading to an increased generation of ROS [29,25]. Oxidative stress can occur as a result of increased ROS generation and/or failure of antioxidant system. The antioxidant system involves several nonenzymatic compounds and antioxidant enzymes such as SOD, CAT and GPx. SOD is the first line of antioxidant defense system. The two main isoforms of SOD, manganese SOD in mitochondria and copper-zinc SOD (Cu/Zn SOD) in cytosol converts superoxide radical into H_2O_2 . H_2O_2 , in turn, is converted to oxygen and H_2O by CAT or GPx [30]. Our present findings reveal that SOD, CAT and GPx activities are significantly decreased in adult SL rats, suggesting a reduced antioxidant defense, although differences in Cu/Zn SOD content was not observed. Rector et al. [31] have demonstrated a reduced hepatic activity of the free radical scavenger SOD and increased oxidized glutathione in obese rodent model of nonalcoholic fatty liver disease. This negative imbalance between reduced antioxidant defense and increased oxidative damage likely predisposes hepatocytes and hepatic mitochondria to progressive injury.

In this study, the lipid oxidative damage assessed by plasma and liver levels of MDA, one of the key end products of lipid peroxidation

was increased in SL rats. To our knowledge, this is the first evidence showing an increase of MDA levels associated with a deficient antioxidant defense in adult rats programmed by postnatal early overnutrition. The underlying causes for increased MDA levels in this model probably associated with increased ROS production such as O_2^- are not yet established, but a decreased activity of the enzymatic antioxidant defense system represented by SOD, CAT and GPx enzymes can be implicated.

The ROS or peroxynitrite are powerful oxidizing agents that might cause depletion of sulphydryl groups and oxidation of many molecules causing damage [32]. They can also cause DNA damage such as breaks, protein oxidation, and nitration of aromatic amino acid residues in proteins [33]. Measurement of NO content through quantification of nitrite in the liver showed a decreased nitrite bioavailability in SL rats. One of the most important reactions under physiological conditions is that O_2^- and NO radicals result in peroxynitrite. It is well known that O_2^- is important in the breakdown of NO to peroxynitrite, thereby depleting NO [34]. Therefore, this decrease in nitrite levels presumably represents enhanced NO degradation by O_2^- in the presence of a deficient antioxidant mechanism of defense. On the other hand, insulin resistance is associated with lower NO generation [35].

The deficiency of activity of antioxidant enzymes and the higher plasma and liver MDA concentrations in SL rats can indicate a higher oxidative stress in these animals. Some studies have associated oxidative stress and its role in the development of insulin resistance. ROS have been shown to activate the stress-sensitive serine/threonine kinase c-jun N-terminal kinase (JNK), which in turn phosphorylates IRS at serine residues and thus attenuate insulin signaling [36]. In the present study, SL rats presented an impairment of the insulin signaling in the liver, confirmed by reduction of IR, IRS1, p-IRS1, PI-3K and Akt1 content. Previously, Rodrigues et al. [14] have demonstrated, in the 90-day-old SL rats, lower IRS1, PI-3K and GLUT-4 expressions and lower Akt activity in adipocytes. Also,

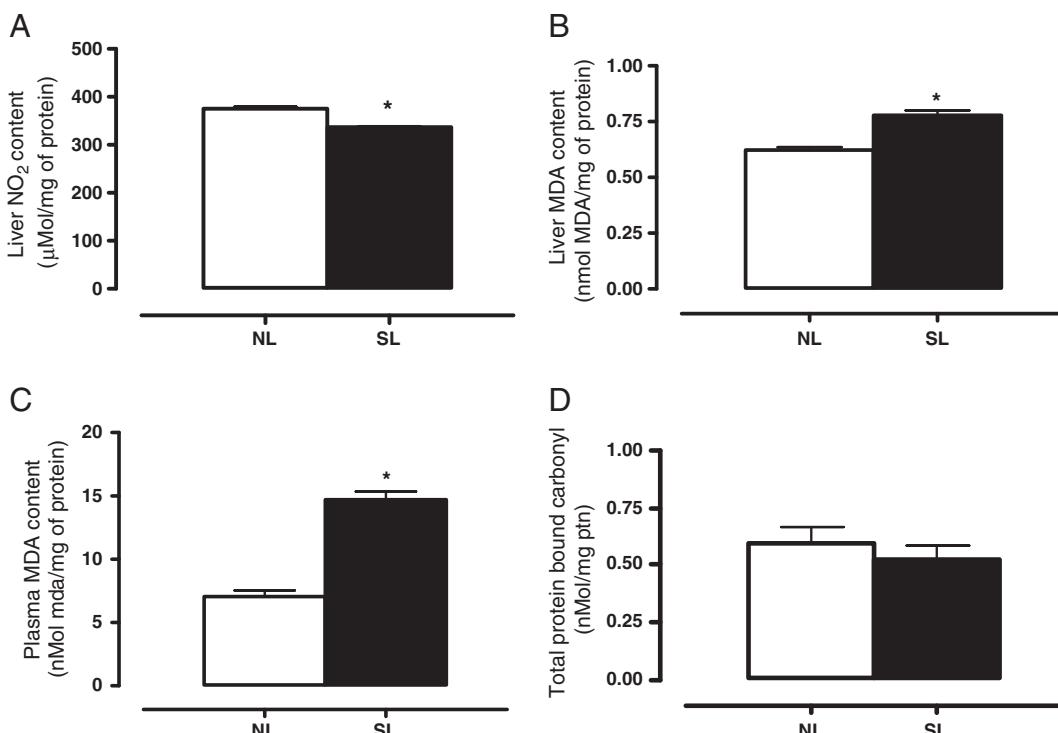


Fig. 3. Liver nitrite content (A), liver TBARS (B), plasma TBARS (C) and liver total protein bound carbonyl content (D) in adult SL (black) and NL (white) rats. Values are reported as mean \pm S.E.M. * $P<.05$; $n=8$ animals/group.

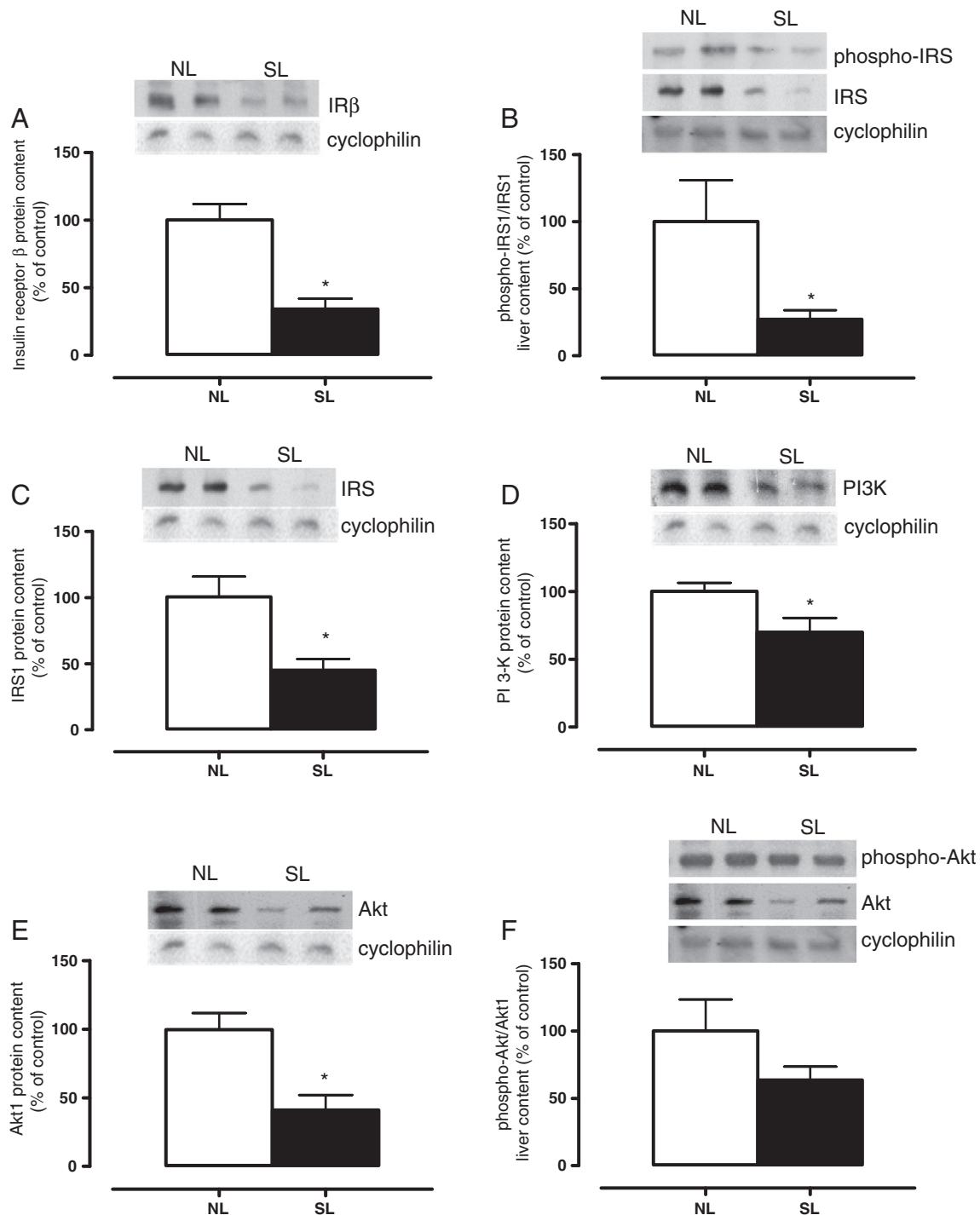


Fig. 4. Liver IR β (A), phospho-IRS-1 (B), IRS-1 (C), PI3K (D), Akt (E) and phospho-Akt1 (F) protein content in adult SL (black) and NL (white) rats. Values are reported as mean \pm S.E.M. * P <0.05; n =8 animals/group.

Martins et al. [37] have found that 150 days-old SL Swiss mice had decreased insulin sensitivity in the heart. However, in 1-year-old SL rats, no changes in liver and heart insulin pathway signaling were observed [38].

It is possible that the excessive fat tissue or the inabilities of fat storage, common on obesity, links nutrient excess to insulin resistance. The food intake reduction found in both C and SL groups at 180 days old compared with 120 days old is probably due to ageing, since orexigenic hypothalamic peptides are reduced during ageing [39]. Also, the higher body weight compared to the lower food intake

could be explained by the lower rest metabolic rate associated with ageing. We know that even in humans, ageing is associated with a higher visceral fat mass gain compared to total body mass, especially in men [40]. The increased free fat acids (FFA) flux into circulation causes ectopic accumulation of fat in tissues such as muscle and liver [41,42]. Besides, adipose tissue not only releases FFA but also produces several inflammatory molecules including tumor necrosis factor α (TNF- α) and interleukin (IL)-6 which may have local effects on adipose metabolism and also systemic effects on other tissues [43,44]. In liver, TNF- α inhibits insulin signaling by mechanisms

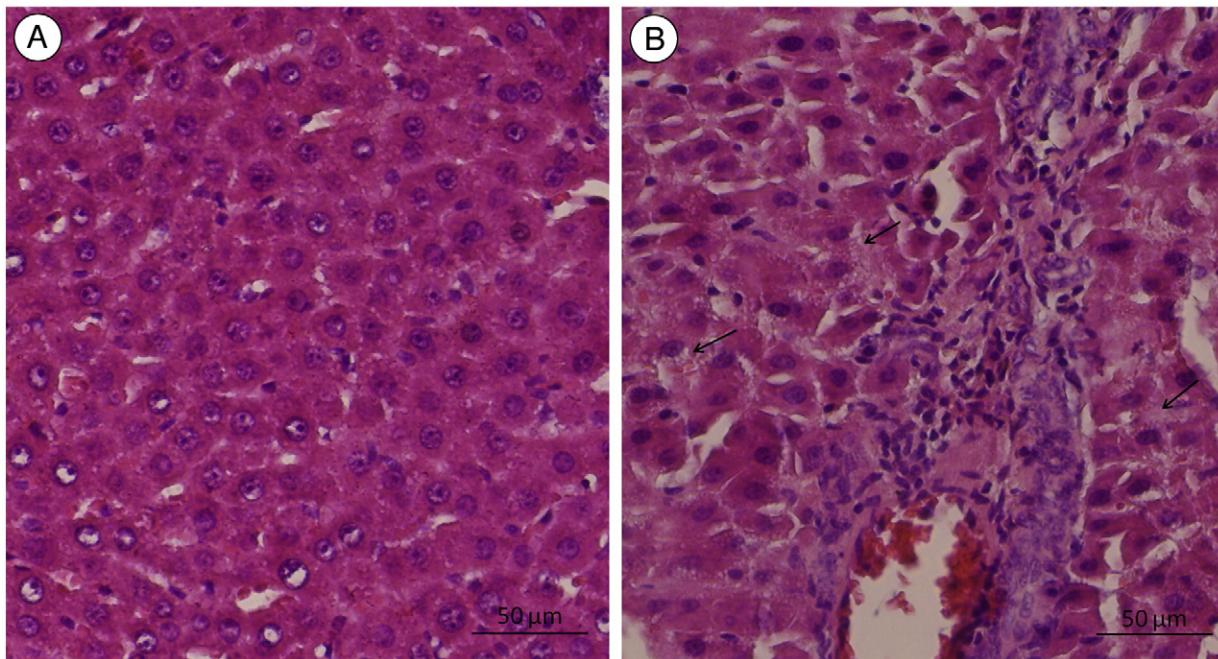


Fig. 5. Liver histology. Photomicrographs of the liver with same magnification ($\times 40$) and stained with hematoxylin-eosin. (A) Typical architecture of a NL offspring. (B) Liver of SL offspring with microsteatosis (arrow) and inflammatory cell infiltrate.

including the activation of serine kinases such as JNK-1 and induction of suppressor of cytokine signaling (SOCS) proteins [45]. Likewise, IL-6 impairs insulin signaling in liver through serine phosphorylation of IRS-1 and activating SOCS proteins [43]. Furthermore, IL-6 induces very low-density lipoprotein secretion and hypertriglyceridemia and it could directly affect liver lipid metabolism [46–48].

The higher oxidative stress evidenced by the lower activity of antioxidant enzymes CAT, SOD and GPx and the higher MDA liver and plasma content could be responsible for the impairment in liver insulin signaling in the SL group. Kathirvel et al. [49] demonstrated the relation between the higher liver oxidative stress and impairment of insulin signaling in transgenic mouse model of nonalcoholic fatty liver disease. In vitro oxidative stress in mammalian skeletal muscle leads to loss of IRS-1 and IRS-2 proteins, increased relative IRS-1Ser³⁰⁷ phosphorylation and decreased phosphorylation of Akt Ser⁴⁷³ [16].

The oxidative stress is recognized as a promoter of important hepatic injury [50]. This damage is associated to an inflammatory response and microsteatosis (nonalcoholic steatosis) as demonstrated in postnatal EO offspring. Additionally, hepatic injury could be suggested in SL offspring through reduction of serum albumin and increased serum globulin demonstrated in our previous report [7]. Several studies in different experimental models have shown that the diminished ratio between albumin and globulin (A/G) could be considered as marker of hepatic tissue lesion [51–53].

In general terms, epigenetic mechanisms, such as DNA methylation or histone acetylation/deacetylation, induced by neonatal imprinting factors (diets, hormones, pollutants) may lead to an increased risk of metabolic disorders in the adult offspring [4]. Studies correlate the visceral obesity to DNA hypermethylation of important enzymes involved in mitochondrial fatty acid oxidation, gluconeogenesis, and lipogenesis in the liver causing a silencing of your expression and contributing to obesity-induced liver insulin resistance [54,55]. Thus, this explanation may help to understand the mechanism involved in the permanent changes of oxidative stress parameters and insulin signaling induced by

overnutrition during lactation. Whether this alteration can turn overfed children more susceptible to cell damage caused by higher ROS generation in adult life, which deserves epidemiological and prospective studies.

In conclusion, our present findings evidenced that postnatal EO can program the oxidative stress in liver, maybe contributing for impairment of the insulin signaling.

Acknowledgments

The authors are grateful to Ms Mônica Moura, Ulisses Siqueira and Carlos Alberto Guimarães for animal care and technical assistance.

References

- [1] de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. *Am J Clin Nutr* 2010;92:1257–64.
- [2] Lucas A. Role of nutritional programming in determining adult morbidity. *Arch Dis Child* 1994;71:288–90.
- [3] Barker DJ. The developmental origins of adult disease. *J Am Coll Nutr* 2004;23: 588–95.
- [4] de Moura EG, Lisboa PC, Passos MC. Neonatal programming of neuroimmuno-modulation – role of adipocytokines and neuropeptides. *Neuroimmunomodulation* 2008;15:176–88.
- [5] Dörner G, Hagen N, Witthuhn W. Early postnatal overfeeding as an etiopathogenetic factor in adult obesity. *Acta Biol Med Ger* 1976;35:799–803.
- [6] Rodrigues AL, de Moura EG, Passos MC, Dutra SC, Lisboa PC. Postnatal early overnutrition changes the leptin signaling pathway in the hypothalamic-pituitary-thyroid axis of young and adult rats. *J Physiol* 2009;587:2647–61.
- [7] Rodrigues AL, de Moura EG, Passos MC, Trevenzoli IH, da Conceição EP, Bonomo IT, et al. Postnatal early overfeeding induces hypothalamic higher SOCS3 expression and lower STAT3 activity in adult rats. *J Nutr Biochem* 2011;22: 109–17.
- [8] Risnes KR, Vatten LJ, Baker JL, Jameson K, Sovio U, Kajantie E, et al. Birthweight and mortality in adulthood: a systematic review and meta-analysis. *Int J Epidemiol* 2011, <http://dx.doi.org/10.1093/ije/dyq267>.
- [9] Plagmann A, Roepke K, Harder T, Brunn M, Harder A, Wittrock-Staar M, et al. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. *J Perinat Med* 2010;38:393–400.
- [10] You S, Gotz F, Rohde W, Dörner G. Early postnatal overfeeding and diabetes susceptibility. *Exp Clin Endocrinol* 1990;96:301–6.

[11] Plagemann A, Heidrich I, Götz F, Rohde W, Dörner G. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. *Exp Clin Endocrinol* 1992;99:154–8.

[12] Boullu-Ciocca S, Dutour A, Guillaume V, Achard V, Oliver C, Grino M. Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: its relationship with the metabolic syndrome. *Diabetes* 2005;54:197–203.

[13] Davidowa H, Plagemann A. Hypothalamic neurons of postnatally overfed, overweight rats respond differentially to corticotropin-releasing hormones. *Neurosci Lett* 2004;371:64–8.

[14] Rodrigues AL, De Souza EP, da Silva SV, Rodrigues DS, Nascimento AB, Barja-Fidalgo C, et al. Low expression of insulin signaling molecules impairs glucose uptake in adipocytes after early overnutrition. *J Endocrinol* 2007;195:485–94.

[15] Chang YC, Chuang LM. The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. *Am J Transl Res* 2010;2:316–31.

[16] Archuleta TL, Lemieux AM, Saengsirisuwan V, Teachey MK, Lindborg KA, Kim JS, et al. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. *Free Radic Biol Med* 2009;47:1486–93.

[17] Marques RG, Morales MM, Petroianu A. Brazilian law for scientific use of animals. *Acta Cir Bras* 2009;24:69–74.

[18] Drummond GB. Reporting ethical matters in The Journal of Physiology: standards and advice. *J Physiol* 2009;587:713–9.

[19] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 1976;72:248–54.

[20] Bannister JV, Calabrese L. Assays for superoxide dismutase. *Methods Biochem Anal* 1987;32:279–312.

[21] Aebi H. Catalase in vitro. *Methods Enzymol* 1984;105:121–6.

[22] Flohé L, Günzler WA. Assays of glutathione peroxidase. *Methods Enzymol* 1984;105:114–21.

[23] Valenca SS, Pimenta WA, Rueff-Barroso CR, Ferreira TS, Resende AC, Moura RS, et al. Involvement of nitric oxide in acute lung inflammation induced by cigarette smoke in the mouse. *Nitric Oxide* 2009;20:175–81.

[24] Franco JG, de Moura EG, Koury JC, Trotta PA, Cordeiro A, Souza LL, et al. S, Pazos-Moura CC, Lisboa PC, Passos MC. Resveratrol reduces lipid peroxidation and increases sirtuin 1 expression in adult animals programmed by neonatal protein restriction. *J Endocrinol* 2010;207:319–28.

[25] de Oliveira PR, da Costa CA, de Bem GF, Marins de Cavalho LC, de Sousa MA, de Lemos Neto M, da Cunha Sousa PJ, de Moura RS, Resende AC. Effects of an extract obtained from fruits of Euterpe Oleracea Mart in the components of metabolic syndrome induced in C57BL/6J mice fed a high-fat diet. *J Cardiovasc Pharmacol* 2010;56:619–26.

[26] Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. *Methods Enzymol* 1990;186:464–78.

[27] Velkoska E, Cole TJ, Morris MJ. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. *Am J Physiol Endocrinol Metab* 2005;288:1236–43.

[28] Davidowa H, Plagemann A. Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. *Neuroreport* 2007;18:521–4.

[29] Rudich A, Kanety H, Bashan N. Adipose stress-sensing kinases: linking obesity to malfunction. *Trends Endocrinol Metab* 2007;18:291–9.

[30] Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. *Diabetes Care* 2008;31:170–80.

[31] Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. *J Hepatol* 2010;52:727–36.

[32] Goldstein S, Merényi G. The chemistry of peroxynitrite: implications for biological activity. *Methods Enzymol* 2008;436:49–61.

[33] Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. *Toxicol Pathol* 2002;30:620–50.

[34] Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. *Nature* 1986;320:454–6.

[35] Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. *Rev Endocr Metab Disord* 2010;11:61–74.

[36] Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. *Nature* 2002;420:333–6.

[37] Martins MR, Vieira AKG, de Souza EPG, Moura AS. Early overnutrition impaired insulin signaling in the heart of adult Swiss mice. *J Endocrinol* 2008;198:591–8.

[38] Cunha AC, Pereira RO, Pereira MJ, Soares Vde M, Martins MR, Teixeira MT, Souza EP, Moura AS. Long-term effects of overfeeding during lactation on insulin secretion – the role of GLUT-2. *J Nutr Biochem* 2009;20:435–42.

[39] Kmiec Z. Aging and peptide control of food intake. *Curr Protein Pept Sci* 2011;12(4):271–9.

[40] Rossi AP, Watson NL, Newman AB, Harris TB, Kritchevsky SB, Bauer DC, et al. Effects of body composition and adipose tissue distribution on respiratory function in elderly men and women: the health, aging, and body composition study. *J Gerontol A Biol Sci Med Sci* 2011;66(7):801–8.

[41] Garg A. Regional adiposity and insulin resistance. *J Clin Endocrinol Metab* 2004;89:4206–10.

[42] Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. *Physiol Rev* 2007;87:507–20.

[43] Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. *Clin Biochem* 2009;42:1331–46.

[44] Fan JG, Farrell GC. VAT fat is bad for the liver, SAT fat is not! *J Gastroenterol Hepatol* 2008;23:829–32.

[45] Popa C, Riel PL, Meer WM, Stalenhoef AFH. The role of TNF- α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. *J Lipid Res* 2007;48:751–62.

[46] Nonogaki K, Fuller GM, Fuentes NL, Moser AH, Staprans I, Grunfeld C, et al. Interleukin-6 stimulates hepatic triglyceride secretion in rats. *Endocrinology* 1995;136:2143–9.

[47] Kroder G, Bossemaier B, Kellerer M, Capp E, Stoyanov B, Mühlhöfer A, et al. Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signalling. *J Clin Invest* 1996;97:1471–7.

[48] Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y, et al. Suppressors of cytokine signalling-1 and 6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. *J Biol Chem* 2001;276:25889–93.

[49] Kathirvel E, Morgan K, French SW, Morgan TR. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. *Eur J Gastroenterol Hepatol* 2009;21:973–83.

[50] Roló AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. *Free Radic Biol Med* 2011 [Epub ahead of print].

[51] Wong MC, Portmann B, Sherwood R, Niemela O, Koivisto H, Parkkila S, et al. The cytoprotective effect of α -tocopherol and daidzein against d-galactosamine induced oxidative damage in the rat liver. *Metabolism Clinical and Experimental* 2007;56:865–75.

[52] Pooranaperundevi M, Sumiyabu MS, Viswanathan P, Sundarapandian R, Anuradha CV. Insulin resistance induced by a high-fructose diet potentiates thioacetamide hepatotoxicity. *Singapore Med J* 2010;51(5):389–98.

[53] Huo HZ, Wang B, Liang YK, Bao YY, Gu Y. Hepatoprotective and antioxidant effects of licorice extract against CCl4-induced oxidative damage in rats. *Int J Mol Sci* 2011;12:6529–43.

[54] Jiang M, Zhang Y, Liu M, Lan MS, Fei J, Fan W, et al. Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet-induced obese rats. *Endocrinology* 2011;152(4):1284–9.

[55] Sookoian S, Rosselli MS, Gemma C, Burgueño AL, Fernández Gianotti T, Castaño GO, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1 α promoter. *Hepatology* 2010;52(6):1992–2000.